8  Comprehension & Others

8.1 List Comprehension

8.1.1 Syntax

[expression for item in iterable if condition]

Longer version:

[expression for item1 in iterable1 if condition1
            for item2 in iterable2 if condition2
            ...
            for itemN in iterableN if conditionN ]
result = []
for item1 in iterable1:
    if condition1:
        for item2 in iterable2:
           if condition2:
               ...
               for itemN in iterableN:
                   if conditionN:
                       result.append(expression)

8.1.2 Basic

nums = [1, 2, 3, 4, 5]
squares = [n * n for n in nums]
squares
#> [1, 4, 9, 16, 25]

Comprehension with filter

numbers = [1, 2, 3, 4, 5]
[n ** 2 for n in numbers if n % 2 == 0] 
#> [4, 16]
ls = ["a", "b", "c"]

# Equivalent
[x.upper() for x in ls]
#> ['A', 'B', 'C']
[str.upper(x) for x in ls]
#> ['A', 'B', 'C']

8.1.3 Using _ varible

d = [1, 2]
l = [list(d) for _ in d]
l
#> [[1, 2], [1, 2]]

8.1.4 Ex 1: List of Dict

portfolio = [
  {'name': 'IBM', 'shares': 100, 'price': 91.1 },
  {'name': 'MSFT', 'shares': 50, 'price': 45.67 },
  {'name': 'HPE', 'shares': 75, 'price': 34.51 },
  {'name': 'CAT', 'shares': 60, 'price': 67.89 },
  {'name': 'IBM', 'shares': 200, 'price': 95.25 }
]

Collect all names

names = [s['name'] for s in portfolio]
names
#> ['IBM', 'MSFT', 'HPE', 'CAT', 'IBM']

Find all entries with more than 100 shares [‘IBM’]

more100 = [s['name'] for s in portfolio if s['shares'] > 100 ]
more100
#> ['IBM']

Find the total shares*price

cost = sum([s['shares']*s['price'] for s in portfolio])
cost
#> 37105.15

Collect (name, shares) tuples

name_shares = [ (s['name'], s['shares']) for s in portfolio ] 
name_shares
#> [('IBM', 100), ('MSFT', 50), ('HPE', 75), ('CAT', 60), ('IBM', 200)]

8.1.5 Ex 2: Wrapping Function

def toint(x):
    try:
        return int(x)
    except ValueError:
        return None
values = [ '1', '2', '-4', 'n/a', '-3', '5' ]

data1 = [ toint(x) for x in values ]
print(data1)
#> [1, 2, -4, None, -3, 5]

data2 = [ toint(x) for x in values if toint(x) is not None ]
print(data2)
#> [1, 2, -4, -3, 5]

Using :=

data3 = [ v for x in values if (v:=toint(x)) is not None ]
print(data3)
#> [1, 2, -4, -3, 5]

data4 = [ v for x in values if (v:=toint(x)) is not None and v >= 0 ]
print(data4)
#> [1, 2, 5]

8.2 Set & Dict Comprehension

8.2.1 Set Comprehension

A set of distinct values

# Set comprehension
names = { s['name'] for s in portfolio }
names
#> {'CAT', 'MSFT', 'IBM', 'HPE'}

8.2.2 Dict Comprehension

prices = { s['name']:s['price'] for s in portfolio }
prices
#> {'IBM': 95.25, 'MSFT': 45.67, 'HPE': 34.51, 'CAT': 67.89}
dd = {"a": "aa", "b": "bb"}

{k: v for k, v in dd.items()} # Dict
#> {'a': 'aa', 'b': 'bb'}
[k for k in dd.keys()] # Keys
#> ['a', 'b']
[v for v in dd.values()] # Values
#> ['aa', 'bb']

8.3 map() Function

map(function, iterable)

map() applies a function to all the items in an input list. It returns a map object (an iterator) of the results after applying the given function to each item of the given iterable (list, tuple etc.).

numbers = [1, 2, 3, 4, 5]
squares = map(lambda x: x**2, numbers)  
list(squares)  # Converting the map object to a list
#> [1, 4, 9, 16, 25]

8.4 Differences and When to Use

  • Readability: List comprehensions are often more readable and succinct, especially for simple operations or when filtering conditions are involved.
  • Performance: Both list comprehensions and map() are faster than a for loop. However, for very large data sets, map() can be more memory-efficient (since it returns an iterator), but the difference is often negligible.
  • Function Application: If you’re applying an existing function (especially a more complex one), map() can be more convenient. For operations that can be expressed as a single expression, or where you need conditional logic (like filtering), a list comprehension is often the better choice.
  • Return Type: map() returns a map object (iterator), which you often need to convert back to a list or another iterable type. List comprehensions return a list directly.

In summary, use list comprehensions when you need a readable and concise way to generate a new list by applying an expression to each item in an iterable, possibly with filtering. Use map() when you need to apply an already-defined function to each item in an iterable and are okay with receiving an iterator as the result.